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A n  analysis is made of the axially symmetric flow of a rotating inviscid incom- 
pressible fluid into a point sink a t  sufficiently low values of the Rossby number. 
Based on the experimental observations, a theoretical flow model involving a 
surface of velocity discontinuity which separates the central flowing core from 
the surrounding stagnant region is proposed. A family of solutions is obtained 
after posing the problem as one involving a free streamline which is the line of 
velocity discontinuity in the axial plane. It is found that the flow possesses a 
minimum flow force as well as a minimum energy flux. Corresponding to such a 
state, a unique intrinsic Rossby number R' based on the properties of the flowing 
core with a value of 1/48 is determined. A discussion is made of the flow field 
development induced by a sudden start of a sink discharge. A theoretical model 
involving a blocking wave propagating upstream is proposed. The speeds of 
blocking waves are found to be higher than the maximum group velocity of the 
infinitesimal waves for R > 0.06. On the other hand, for R < 0.03, the waves are 
linear and dispersive in nature. 

1. Introduction 
For the major part of this paper, an axially symmetric flow of a rotating in- 

viscid incompressible fluid into a point sink at  the axis of rotation, as shown in 
figure 1, will be considered. For values of the Rossby number R ( = Q/2nS2b3, where 
Q, b and i2 are the flux, radius and angular velocity of the rotating cylinder, respec- 
tively) greater than 0.261, a solution has been given by Long (1956). However, 
when R is near this critical value there is an elongated eddy extending axially 
upstream, resulting in return flow t o  infinity. The assumed upstream condition 
is hence violated and the flow pattern is also physically unstable, so that Long's 
solution does not describe the flow with R near the critical value. In  the experi- 
mental investigation by Shih & Pao (1971, hereafter referred to as I), it has been 
demonstrated that, when R is near and below 0.261, the flow is essentially charac- 
terized by the presence of a stagnant region surrounding a core of flowing fluid. 
It was observed that a t  a Rossby number below the critical value the flow field, 

t Present address : Biotechnology program, Carnegie-Mellon University, Pittsburgh, Pa. 
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induced by a sudden start of discharge at the sink, experiences several distinct 
stages of development during the course of each experiment. During the second 
stage, the flowing core tends to adjust itself such that the intrinsic Rossby num- 
ber R’ ( = W,/(2Sz,Sc), where S,, and !2, are the radius, axial velocity and angular 
velocity of the flowing core, respectively) virtually remains a t  a constant 
value of 0.36 for all separated flows. 

Theoretical works which show the features of blocking are recent papers by 
Trustrum (1964) and Kao (1965a) b) .  Trustrum developed a technique for solv- 
ing initial-value problems using an Oseen-type approximation to the nonlinear 
inertial terms in the equations of motion. I n  particular, she solved the problem 
of a stratified flow into a line sink. A blocked flow was found. Kao constructed a 
free-streamline solution for stratified flows into a line sink and over obstacles at 
low Froude numbers. 

In  this paper, based on the experimental observations in I of the second stage 
of flow development, a theoretical flow model involving a surface of velocity 
discontinuity is constructed. The solution is, however, not unique and a family of 
solutions is found. Nevertheless, the non-uniqueness can be resolved by a plausible 
argument using the principle of minimum energy flux and flow force associated 
with the blocked flow. 

I n  the last section the blocking wave associated with the establishment of a 
stagnant zone for the selective withdrawal is discussed. Since the experiments in I 
have established the overall character of the flow, a blocking flow model is now 
proposed. It is hoped that the present model may a t  least clear the ground for 
some subsequent attempt to provide a complete theory. 

2. The governing equations 
We shall consider axisymmetric motion only, and fixed cylindrical co-ordinates 

r ,  0 and z are used. With u, v and w denoting the velocity components in the direc- 
tions of increasing r ,  f3 and z, p* denoting fluid pressure and x denoting the 
body-force potential, the equations governing axisymmetric motion are 

in which 

Dv uv -+- = 0, 
Dt r 

Dw lap 
Dt p a x ’  
_.- _ _ _ _  

The incompressibility condition may be satisfied by writing the velocity com- 
ponents u and w in the form 
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FIGURE 1. Blocking flow model in the axial plane. 

where $(r, z )  is the stream function. Following Batchelor (1967, p. 545) equations 
(2 .1) - (2 .4)  can be combined into one equation governing $: 

where H = &(uz + v2 + w2) +p/p, C = vr, (2 .6 )  

which are functions of $ only. This is essentially the azimuthal component of the 
vorticity equation. 

Based upon the experimental observations we shall adopt a flow model as 
showninfigure 1. The modelischaracterized by asurface of velocity discontinuity. 
The fluid outside the discontinuity is stagnant in the axial plane and is, hence, 
not drawn into the sink. The dividing stream surface is a slipstream or a vortex 
sheet along which the pressure must be continuous. Now, in region A of figure 1, 
the fluid far upstream has a uniform axial velocity W, and a uniform angular 
velocity Qc. Therefore, we have 

$ = - I 2  2r K, C = r2Qc = - ( 2 Q J X )  $, 

H = +WE + r2Q22, = & W: - (2Cl; /K)  $. 

The governing equation (2 .5)  for the flow in region A takes the linear form 

In  dimensionless form, (2.7) becomes 

where 7 = r /b ,  = z / b , Y  = 2 $ / ( b 2 X )  and = T / ( 2 Q c b ) .  
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3. The boundary conditions 

the boundary conditions in the flow region A are 
With t; measured axially from the sink and 7 measured radially from the axis, 

where Zc = Sc/b is the dimensionless radius of the flowing core far upstream, and 
a = a/b is the radial distance to the point where the dividing streamline meets the 
line[ = 0. 

We consider the outer region B to be stagnant in the axial plane. The equation 
of motions are, therefore, 

- 

from which we obtain 
v = f W ,  (3.2) 

where f(r) is an arbitrary function of r. 
Now consider the wedge zone in region B as shown in figure 2. We assume 

that v is continuous across r = 8, far upstream, so that (3.2) gives rv = St In, along 
line cd in region B. By virtue of (2.6) we also have rv = Sg Qc along the dividing 
streamline cea. Thus, on the bounding surfaces of the wedge zone the angular 
momentum rv = S,2 QC = constant. It follows that, unless the angular momentum 
vr is constant throughout the wedge zone, there must exist a layer of fluid in this 
wedge zone in which Rayleigh's stability criterion d(rv)2/dr > 0 (Rayleigh 1880; 
Lin 1955, p. 51) is violated. As a consequence, mixing between the layers of 
different radii will result, making the angular momentum vr uniform throughout 
the wedge zone (cf. Scorer 1965; Bretherton & Turner 1968). It also follows that 
the swirling velocity v is continuous across the dividing streamline. 

The dynamic boundary condition along the dividing Streamline can be derived 
from Bernoulli's theorem. In  region A along the dividing streamline we have, 
from (2.6), 

i(u2 + v2 + w2) +p/p = constant. (3.3) 
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In  the wedge region, u = 0, w = 0 and the swirling motion is a potential vortex; 
thus we have 

Since the pressure p*,  the body-force potential x and the swirling velocity v 
are continuous across the dividing streamline, on combining (3.3) and (3.4) we 
obtain 

along the dividing streamline represented by $ = - &8:Wc. Expressing this in 
non-dimensional form we have 

+v2+p1p = constant. (3.4) 

uz+w2 = w; 

4. Method of solution 
The technique is to  introduce a fictitious sink distribution from 7 = 2 to 7 = 1 

at 5 = 0 in such a way that the governing equation (2.8) can be applied to the 
whole flow region. I f  the fictitious sink distribution ends a t  7 = Z the dividing 
streamline will be tangent to the line 5 = 0 at  7 = tl and will divide the flow into 
two regions, one part flowing completely into the original sink and the other into 
the fictitious sink distribution that has been introduced. The fictitious sinks and 
their range ti must be varied until the solution satisfies the dynamic condition 
(3.5) along the dividing streamline. This technique has been used successfully by 
Kao (1965a, 1970) in the problem of stratified flow into a line sink. 

Let the solution of this new problem be Y. Using the principle of superposition 
we can assume that 

in which y is the percentage of the total flow field that flows into the original sink, 
Yl represents flow into the original sink and Y2 represents flow into the fictitious 
sink distribution. 

(4.1) YJ- = 7%+(+?4%, 

The boundary conditions forYfr, andY', are 

and 
i 

0 for 7 = 0 ,  O < ( < C o ,  

-v2 for 0 6 7 < 1, 5 = 00, 

- 1  for 0 < q  < 1,  5 =  0,  
- 1 for q = 1 ,  O < [ < C o  

where g(7) is the distribution function for the fictitious sink. The dividing strearn- 
line is represented by 

The solutionY satisfying all boundary conditions listed in (4.2) and (4.3) and the 
dynamic boundary condition (3.5) will exhibit the dividing streamline of the 

- 
y = - y  = -8:. (4.4) 
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original boundary-value problem. The region that flows into the fictitious sink 
distribution is then replaced by the stagnant fluid. Solutions for Yl and Y2 can 
be obtained by the method of separation of variables. For Y1 we obtain 

in which An = - 2/[A,J;(An)] and An is the nth zero of J l ( A ) .  For Y,, a constant 
sink strength from 7 = CC to 9 = 1 is assumed.? Thus we have 

g(7)  = (a2-72)/(1 -3). (4.6) 

With g ( 7 )  so chosen, it is then found that 

W 

Y, = --r2+q C B,e~p[-(A:--B-~)t[]J~(h,r]) ,  
,=l 

(4.7) 

in which 

Finally we obtain 

4a J,(EA,) 
I -a2 A,J;(A,)' 

B, = - 

m 

Y = - r2 + y7 I; A ,  exp [ - (Ak - R-,)* 51 Jl(An7) 
n=l - 

+ (1 - y )  r ]  $ B, exp [ - (A: - E-,)* 61 Jl(Anq). (4.8) 

The series converges uniformly for all values of t > 0 and 0 6 7 < 1. The dimen- 
sionless velocity components are 

n = l  

1 - y  OD + - C BL exp [ - (A: - R-,)* 51 Jl(Aa7), 
2 n=l 

(4.9) 

2(hE - I 2 - 2 ) 4  , 43 J,(ZA,) (A: - R-2)t 
A' - -  B, = - where n -  AnJi (An)  ' I - a2 A, J t (  A,) 

and 

l -y  +- B ~ e x p [ - ( h ~ - W - 2 ) 4 & ] J o ( h , 7 ) ,  (4.10) 
2 n = l  

where 

t One of the referees has pointed out that the uniform sink distribution Z < 7 < 1 
and the isolated sink at  7 = 0 will produce a stagnation point at  some point between 0 and 
6. This is true because there is a local singularity of a logarithmic nature for the radial 
velocity component at  7 = @, if the strength of the sink distribution is bite there. How- 
ever, the logarithmic singularity is felt only in a small neighbourhood of the point r]  = @, 
so that, by letting the uniform sink distribution to fall off to zero in a small interval near 
7 = 5, the singularity is easily removed and tangency at  7 = 5 is assured for a sufficiently 
strong sink at the origin. Our colleague, Professor T. W. Kao, has kindly provided a 
proof of the above point, which is now included as an appendix here. 
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FIGURE 3. Deviation from the dynamic boundary condition for some computed solutions. 

w 0.27 0.50 0.50 
Y 0.51 0.50 0.49 

0.38 0.31 0.35 a 

0 e A 

- 

Since there are three parameters, y, ii and E, involved in these expressions, a 
trial-and-error method is used to solve the problem. For any assumed values of 
y, ii and a we first use (4.4) and (4.8) t o  determine the correct position of the 
dividing streamline 7 = y(c). Equations (4.9) and (4.10) then enable us to 
calculate the velocity along the dividing streamline. It is seen that if a graph of 
dimensionless speed against 5 is plotted it can immediately be determined whether 
the dynamic boundary condition (3.5) along the dividing streamline is satisfied. 
Some typical results are presented in figure 3. It is found that the dynamic 
boundary condition (3.5) along the dividing streamline is only satisfied approxi- 
mately but the errors involved are small. Moreover, from the numerical result, it is 
found that stream functions and positions of the dividing streamline are not very 
sensitive to small errors in the dynamic boundary condition (3.5).? Detailed 
calculations were done with the aid of the CEIR computing service and an IBM 
7094 computer. 

5 .  Flow pattern 
The flow pattern of a typical solution is shown in figure 4. The solution below 

the dividing streamline is the solution to the originally posed boundary-value 
problem with intrinsic Rossby number R' = E/y$, where R' = K/(2i2c8c). 

The range of R' for the solutions calculated is from 0.36 to 13.57. The flow 
pattern for a large Rossby number is plotted in figure 5. Since for large Rossby 

t A similar situation was also found by Kao (1970) in his calculation of stratified flow. 
In fact Kao has demonstrated this very convincingly by comparing his calculated solution 
with a potential solution. 

30 F L M  57 
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FIGURE 4. Theoretical flow of selective withdrawal toward a point sink on the axis 

of rotation. The streamlines and the velocity profiles are in the axial plane. 

number the effect of rotation is negligible, the flow pattern in figure 5 can, 
therefore, be interpreted as the flow discharging into the air from a hale in the 
bottom of a large tank containing liquid. The dividing stream surface is then a 
free surface. The gravity effect is, however, being neglected here. It is noted that 
such a flow pattern must exist a t  least near the point source where the velocity 
is large and the gravity effect is indeed negligible. 

It becomes apparent that there exists a family of solutions corresponding to a 
range of values of R'. Like most inviscid fluid problems with singularities in the 
flow field, the non-uniqueness of the solution is a direct consequence of the singu- 
larities involved. I n  the present case the dividing streamline, which is a vortex 
sheet, is certainly a sheet of singularity. 

Kao (1970), investigating the problem of the flow of a stratified fluid into a line 
sink, has recently found that the free-streamline solution is indeed not unique and 
has given a heuristic argument for the choice of the intrinsic Froude number for 
selective withdrawal. His argument gave a unique Froude number F' = 0.33 
which is slightly higher than rl. Because of the strong similarities between his 
problem and the present one for rotating fluids it is expected that by a similar 
approach a unique solution, corresponding to a unique intrinsic Rossby number 
which is slightly higher than 0.261, will be determined. No such attempt is made 
a t  the present time. I n  spite of the fact that Kao's argument is self-consistent 
within the framework of steady inviscid flows, nevertheless, the unique number, 
derived from his argument, seems not definitive. 
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FIGURE 5. Theoretical flow of discharge from a point source for a large 
Rossby number, R' = 13.57, y = 0.54.5, Z = 0.39. 

In  the present case of rotating flows, the unique number derived from the 
experimental study in I is R' = 0-36, which is quite a bit higher than the value 
expected from Kao's argument. Moreover, Long's solution (1956) shows that the 
effective radius of the flowing core and its rotational speed undergo a drastic 
change as the flow approaches the critical Rossby number 0.261. It is, therefore, 
quite natural that the value of the intrinsic Rossby number R' of the flowing 
core may differ considerably from the value of the critical Rossby number at 
which the flow begins to separate. Although a complete theory which would 
predict the unique value of the intrinsic Rossby number of all separated flows 
is still lacking, a consideration of the energy flux and flow force in the following 
section will bring some physical significance to the unique intrinsic Rossby num- 
ber 0.36 obtained from the experimental investigation. 

30-2 
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6. Energy flux and flow force 
Energy jlux 

From the experimental evidence in I, a quasi-steady inviscid core flow of selective 
withdrawal does exist as shown in figure 1. The total energy transport through 
a given section is 

where H is the Bernoulli quantity defined in (2 .6)  and the integration is to be 
performed over any cross-sectional area. Since w is zero outside the flowing 
core A ,  it is therefore sufficient to integrate over the cross-sectional area of the 
flowing zone. Thus we have 

E = 2np H-ddr = 2np H ( $ )  d$ = constant along the flow. so” :: so” 
Evaluating the energy flux E upstream we have 

where po is the value of p a t  the axis of rotation and Q = 7r SE W, is the volume flux 
through the sink. It is seen that, for given values of Q and Q,, the energy flux is a 
function of the radius 8, of the flowing core. For given Q and a,, any radius for the 
flowing core is possible but, for a certain radius b,, the energy flux is a minimum. 
The minimum occurs when aE/a8, = 0. On using (6 .2)  with po  being independent 

The second relation in (6.3) is equivalent to R’ = 0.354. This value of R‘ is quite 
close to the experimental value 0.36 in I. This means that out of a whole class of 
possible flowing cores, for given values of Q and Q,, only one radius will give a 
minimum energy flux. The fact that (6.3) agrees with the experimental observa- 
tion is significant since this verifies the very important principle that whenever 
selective withdrawal occurs the flowing core tends to adjust itself such that the 
flow possesses a minimum energy flux. Such a flow will now conveniently be 
called a pseudo-critical blocked flow since it is not a critical flow in the usual 
sense. 

Plow force 
We define 

s = ~ ~ 2 ~ ~ ~ ~ ( p + p U . . 2 ) r d r d ~ ,  (6.4) 

where S is called flow force, being the sum of axial pressure force and momentum 
flux. Since the flow force is constant in the present flow it can be evaluated up- 
stream. At the upstream section we have 
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Setting the reference pressure po at the axis equal to zero and integrating (6.5) 
we obtain 

Por given values of Q and a,, the flow force is a minimum for a certain radius b, 
of the flowing core. The minimum occurs when aS/a&, = 0; this yields 

(6.7) 

Relation (6.7) is exactly the same as (6.3). Therefore, we conclude here that, 
whenever selective withdrawal in a rotating fluid occurs, the flowing core tends 
to adjust itself such that the flow possesses a minimum flow force as well as a 
minimum energy flux. 

Maximum discharge rute 

There is another way of looking at  the energy flux and the flow force. Prom 
(6.2) for given values of E and Q,, the discharge rate Q is a function of the radius 
8, of the flowing core. For given E and a,, any radius of flowing core is possible 
but, for a certain radius b,, the discharge rate is a maximum. The maximum 
occurs when aQ/a&, = 0. On using (6.2) with po remaining constant, this yields 

bg = &1/2/1~Q,. 

This is exactly the same as (6.3) or (6.7). Since (6.3) has been verified by the 
experimental study in I, it follows that the flowing core tends to adjust itself such 
that the flow possesses a maximum discharge rate for given values of E and SZ,. 

Similary, from (6.6) it  is seen that, for given values of S and a,, any radius of 
flowing core is possible but, for a certain radius b,, the dischargerate is a maximum. 
The maximum occurs when aQ/a&, = 0;  this yields, from (6.6), 

b,3 = Q,,I~/TQ,. 

This again means that Q will take on its maximum value for given S and SZ, when 
(6.3) holds. It then follows that the flowing core tends to adjust itself such that 
the flow possesses a maximum discharge rate for given values of AS' and IR,. 

7. Blocking wave 
The experimental observation in I actually carried out an initial-value problem 

for a sink flow in a rotating fluid. It was observed experimentally that at  a Rossby 
number below the critical value the flow field, induced by a sudden start of dis- 
charge at the sink, experiences several distinct stages during the course of each 
run. At the initial moment the flow exhibits a feature of potential flow. It then 
develops into a state of selective withdrawal with an inviscid profile of a flowing 
core surrounded by an almost stagnant region. The flow reaches a quasi-steady 
stateduring thisstage. An equivalent initial-value problem can now be stated. The 
flow initially consists of a unidirectional flow in the negative-z direction with 
uniform velocity W and uniform angular velocity SZ, inside a circular cylindrical 
tube of uniform radius. At the time t = 0 a disk with a small hole in its centre 
is inserted perpendicular to the flow such that the flow is blocked in the entire 
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section of the tube except at  the central hole, through which the fluid is dis- 
charged like a sink flow; the strength of the sink is being maintained at  a constant 
value. It is known that a potential flow will be establishedimmediately (see Lamb 
1932, p. 11). In the meantime, it is expected that a large disturbance will be pro- 
pagated upstream owing to this blockage if the original flow is subcritical? 
(i.e. W/(2!2b) < 0.261). An attempt to solve such an initial-value problem has 
been made by Trustrum (1964) for a density-stratified flow, using an Oseen-type 
approximation to the nonlinear inertial terms in the equations of motion. For 
the problem of a stratified flow into a line sink, a blocked flow was found. Although 
Trustrum’s large-time solutions seem to agree qualitatively with the observa- 
tions made by Long (1956) and Debler (1959), her solution has some shortcomings. 

Trustrum’s solution is to be questioned because of her Oseen approximation. 
For the Oseen approximation to be valid, the velocity perturbation must be 
much smaller than the free-stream velocity. Nevertheless, when blocking occurs, 
the Oseen approximation is violated in her solution (i) near the sink or obstacle 
all the time, and (ii) far upstream as a steady state is approached. 

In  the experimental investigation in I ,  some fluctuations of the flow field in 
the initial stage have been detected, although no measurement has been made 
of the details of the wave motion. From the experiment of sudden discharge at  
the sink in I, a quasi-steady flowing core surrounded by a stagnant zone was 
established at z = 9 in. about 5-50 s after the sink discharge, depending on values 
of Q and a. Since disturbances thus generated travel a t  finite speeds, the flow 
far upstream must still remain undisturbed. A sketch depicting the development 
of the blocking wave is shownin figure 6 (b) .  Although the detailed structure of the 
blocking wave is yet to be studied both experimentally and theoretically, the 
existence of such a wave seems beyond any doubt. Since the wave motions in a 
rotating fluid contained in a tube, density-stratified fluid flowing between hori- 
zontal boundaries, and water in an open channel have strong similarities (see 
Long 1954; Benjamin 1970; Veronis 1970) some phenomena in one physical 
system can be analysed and understood in terms of the behaviour in the analogous 
system. To understand the phenomenon of blocking waves in a rotating fluid it is 
advisable t o  note here that analogous phenomena have been observed by Long 
(1954, 1970) and previous investigators in open-channel and two-layer fluid 
flow. The analogy is, in fact, quite striking. The following paragraph is essentially 
taken from Long’s (1954) paper concerning the hydraulic analogy. 

When a high obstacle is inserted in an initially subcritical open-channel flow, 
the flow will become supercritical momentarily at the crest, although remaining 
subcritical upstream and downstream. A steady state cannot be maintained, of 
course, and a wave of elevation (which may break forming an upstream bore) 
will progress upstream raising the upstream level sufficiently to permit a critical 
condition at the crest. A steady state will ultimately be established with a lee 
jump. 

From the above description, it is seen that this wave of elevation propagating 

t In  a very recent paper, Long (1970) pointed out that in a two-fluid system the fluid 
upstream may be disturbed even when conditions permit no infinitesimal disturbance to 
progress upstream. 
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' Head of blocking wave 
(b )  

FIGURE 6. Development of the blocking wave and stagnant zone. (a) t = 0 + ,  potential 
flow into a point sink. (b )  At a later time, the blocking wave progressing upstream with 
speed U ,  leaving a stagnant zone and a concentrated flow behind it. 

upstream is analogous to the blocking wave shown in figure 6. A similar wave 
of elevation had been observed by Long (1954) in a two-layer flow system. In 
rotating or continuously stratified fluids, development of a vortex sheet is 
permissible, and blocking is manifested in the form of stagnant zones in the flow 
field. Thus, instead of raising the upstream level as in open-channel and two- 
fluid flows, the front of the stagnant zone will progress upstream. Behind this 
blocking wave, an almost steady pseudo-critical blocked flow as discussed in the 
previous section will be established. Thus, after a sufficient time, a virtually 
steady flow of selective withdrawal will be established as was observed experi- 
mentally in I. It is seen that the flow upstream of the blocking wave is still in the 
first stage of flow development (potential flow) as classified by the experimental 
study in I while the flow behind the blocking wave should properly belong to the 
second stage. Our aim here is to establish certain relationships between the 
speed of this blocking wave packet and the parameters of the flow field and to 
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explain certain phenomena observed in the development of selective withdrawal 
in I. 

I n  the following analysis it is assumed that the flow far downstream of the 
blocking wave, as shown at cross-section 2 in figure 6 ( b ) ,  is steady with uniform 
axial velocity W ,  and uniform angular velocity Qc in the central core region of 
radius 8, and zero axial velocity surrounding the core. The above assumption was 
essentially verified by the experimental results in I. 

Now, we d e h e  
M = p j ~ J - b w Y d Y d O ,  0 

where M is the mass flux through any cross-section. Since obviously the disk 
cannot displace the fluid at z = + co when only a finite time has elapsed from the 
start of the motion, conservation of mass requires M to be constant. Now con- 
sider two cross-sections, one far upstream and the other far downstream of the 
blocking wave as shown in figure 6 (b) .  Thus, between sections 1 and 2 we have 

Wb2 = WcS,2 = &I;.. (7.1) 

aMlat+axlax = 0, (7.2) 

For z > 0 the equation expressing conservation of momentum is 

where, as before, S is the flow force defined by 

S = J-r/ob(p+pw2) rdrdO. 17.3) 

Since M is constant, (7.2) shows that the value of the flow force S must be con- 
stant everywhere for z > 0. Thus, we obtain between sections 1 and 2 

or, after using (7.1), 

- p 2 )  rd r  = PQ(% - W)/2n. (7.5) 

We now suppose that the blocking wave packet has been progressing upstream 
for some time and that its speed? has reached a constant value U.  Viewed from a 
frame of reference moving with the blocking wave, the flow situation in 6 ( b )  is as 
shown in figure 7. The upstream flow is then maintained with a uniform velocity 
U + W ,  while the downstream flow consists of a concentrated flow a t  the central 
portion with a uniform velocity U +  W and a uniform flow with a velocity U 
surrounding the flowing core. The blocking wave (transition zone) now appears 
stationary in this moving frame of reference, although some minor unsteady 
fluctuations may exist there in actual flows. Whether the blocking wave will break 
as it progresses upstream is yet to be investigated, although some evidence of 
weak turbulence was indeed observed during the initial stage of development in 

t The exact structure and behaviour of the blocking wave packet are yet to be investi- 
gated. The wave packet is probably dispersive in nature; therefore, its speed is the average 
value for the wave group. 
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FIGURE 7. Rotating flow relative to a co-ordinate system moving 
with ths blocking wave. 

the experiments. As it turns out, some energy dissipation is indeed essential in 
the transition region. This point will be discussed later in the section. 

From either figure 6 (b )  or figure 7 it is seen that radial convergence of the flow 
field is induced as the blocking wave progresses. This leads to convergence of the 
angular momentum, which is the reason why the angular velocities in the flowing 
core during the second stage of selective withdrawal were observed to be substan- 
tially higher than the basic rotation. Since the time required to establish the 
second stage was quite short (5-50 s) and the flow is essentially inviscid in nature 
during this stage, it  is seen that the ' spin-up' of the central core is almost entirely 
due to the convergence of the angular momentum. In this respect it is quite 
similar to the spin-up in a closed container (see Greenspan 1968, p. 35). 

Now by considering the angular momentum in a control volume coinciding 
with the stream tube BE-EE' (see figure 7) ,  the angular momentum flux a t  
sections 1 and 2 must be equal owing to conservation of the angular momentum 
flux; thus we have 

J':Q~~(u+ W ) r d r  = n , r z ( ~ + ~ , ) r d r .  (7.6) 

Since, from continuity along the stream tube, we have 

( U +  W ) S ;  = (U+w,)S,2, 
equation (7.6) then becomes ns; = n,s,2. 

(7.7) 

This means that the stream tube BB'-EE' is essentially a vortex tube and that 
the strength along the vortex tube is constant. 

Now we want to show why the angular velocity fz, at the central portion of 
section 2 is uniform if the axial velocity is uniform there. Let rl and r2 be the 
radii of a stream tube in sections 1 and 2. From continuity along the stream tube, 

(U+W)(r ! -S ! )  = U(r:-S,") for S, < r2 ,< b. (7.9b) 

we have ( U + W ) r ;  = ( U + K ) r g  for 0 6 r2 < S,, ( 7 . 9 4  
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FIGURE 8. Typical tangential velocity profiles: x , experimental data points for 
n,/Q = 2.30, R = 0.037; 0, experimental data points for n,/n = 1.97, R = 0454. 

We now assume that the angular momentum along the stream tube is conserved; 

v2r2 = vlrl = 8 r 2  (7.10) thus we have 

where v1 and v2 are tangential velocities at sections 1 and 2, respectively. By 
virtue of (7.9~1,)~ equation (7.10) becomes 

19 

v2/r2 = Q( U + F)/( U + W )  for 0 < r2 < a,, (7 .11)  

which yields on account of (7.7) 
vp/r2 = Ch3;/8;. (7.12) 

Therefore, the angular velocity a t  the central portion of section 2 is indeed uni- 
form. To get the tangential velocity in the outer region 8, < y2 < b, we subsfitUte 
(7.9b) into (7.10); thus we obtain 

(7.13) 

where r,  = r2/b,  81 = 6Jb and 8, = 8Jb. In  view of (7.8), equation (7.13) can also 

(7.14) 

This result is independent of U .  Thus (7.14) should still hold even if the tran- 
sition region is unsteady. Equation (7.14) is now compared with the experimental 
results. Two typical tangential velocity profiles from the experimental measure- 
men& are shown in figure 8. With the ratio 8,/8 known from the experiments and 
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FIGURE 9. Advancing speed of the blocking wave vs. Rossby number. 

- 
8, determined from the experimental data, the tangential velocities in expression 
(7.14) are also plotted in figure 8. It is seen that the agreement between the ex- 
perimental data points and equation (7.14) is remarkably good. This verifies 
indirectly that the flow model proposed in figure 7 is probably a valid one, and 
that the assumptions made above are appropriate. It is also noted that the 
tangential velocity in figure 8 is different from the Rankine vortex since the outer 
portion is not a potential vortex. 

Now we proceed to find the speed of advancement of the blocking wave packet. 
From (7.7) and (7.8) we obtain 

Q,/Q = (U+W,) / (U+ W ) .  (7.15) 

On using (7.1), equation (7.15) becomes 

n,p = (O+ l)/(O+Z:), (7.16) 

where e = U/W,. We observe that Q,/Q is always greater than one since 8: < 1 
(in fact 8: is usually much smaller than one). Since Qc/O and 8: were measured in 
the experiment, the values of can thus be determined from (7.16). In  the experi- 
ment, the value of Q,/O ranges from 1-746 to 2.843 while 8, varies from 0.256 
to 0.606. The values of e determined from equation (7.16) are now plotted in 
figure 9. It is seen that the value of U/W, decreases asR increases, where the broken 
lines in the figure indicate the general trend. With W ,  known from the experiment, 
the values of U can then be determined. To compare U with the maximum group 
velocity co (=  0.522Qb) of the infinitesimal waves in a rotating tube, the ratio 
U/c,  is now plotted in figure 10 (see Fraenkel 1956). It is seen that the majority 
of points are centred around U/c,  = 0.8. If we now use U 21 0 . 8 ~ ~  (=  0.418Qb) 
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for the advancing speed of the blocking wave, then the time required for the block- 
ing wave to travel a distance of Sin. can easily be estimated. We obtained 
to = 4.42/51 (in seconds). Thus, for i2 = 0*079rad/s we have to = 55.9s and for 
i2 = 0*817rad/s we have to = 5.41 s. It was observed in the experiment that the 
time required to establish the second stage at  z = 9 in. was about 5 s for i2 = 0.817 
rad/s and 50s for Q = 0*079rad/s. The fact that the time required to establish 
the second stage at z = 9 in. is so close to the time for the blocking wave to travel 
such a distance indicates that the quasi-steady second stage at  a certain position 
is now established as soon as the blocking wave has passed through it. 

We now note from figure 7 that the blocking wave packet is stationary in a 
uniform upstream flow with velocity U + W .  Therefore, the wave speed c relative 
to the medium should be U + W .  Although W is small compared with U ,  in the 
majority of experiments the correction is significant. Since W was measured 
very accurately in the experiment, the values of c are now calculated and the 
ratio c/co is plotted in figure 11.  It is seen that the majority of c/co values are 
substantially greater than unity for R > 0.06. From the hydraulic analogy with 
the open-channel flow (Long 1954, 1970), this indicates that the blocking wave is 
nonlinear in nature and that the finite disturbance progresses upstream at a super- 
critical speed. For R < 0.03, it is seen that the values of c/co are substantially less 
than unity. This seems to indicate that the behaviour of the wave for R < 0-03 is 
essentially linear in nature. A recent investigation (Pa0 & Kao 1972) of a point sink 
flow in arotating fluid for small Rossbynumbers, using linearizedequations, shows 
that waves of all modes are excited owing to a sudden flow discharge a t  a point 
sink, and propagate at various speeds upstream. The nth mode A,J,(h,r) of the 
wave travels a t  a speed coAl/A,, where A, is the nth zero of J,(h). Thus the first 
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mode A,J,,(h,r) of the wave is the fastest disturbance and travels at the maximum 
wave speed co. All higher modes travel at  progressively slower speeds. Since the 
linear theory is expected to hold for small values of R, it is seen from figure 11 
that the linear theory is probably valid for R < 0.03. In  this case the waves are 
dispersive and an ever-lengthening transition region associated with the wave 
group will develop. Then in the blocking wave model represented by figure 7 an 
equivalent speed of the blocking wave group has been defined. For example, 
for R = 0.02 we have c N 0 . 8 ~ ~ .  That means the wave group is essentially repre- 
sented by the first few modes of dispersive waves with an equivalent speed of 
0*8c,. 

Finally, a word about the energy dissipation in the transition region is in order. 
The analysis in this section indicates that the angular momentum along the 
stream tube in figure 7 is essentially conserved while the energy is not. In  fact, 
some energy dissipation is essential so that such a transition is possible. Other- 
wise, a uniform rotating flow in a straight tube will remain uniform according to 
equation (2.7). 

8. Conclusions 
From the present study, we draw the following conclusions. 
(i) Based on the experimental observations, a theoretical flow model involv- 

ing a surface of velocity discontinuity which separates the central flowing core 
from the surrounding stagnant region is proposed. Indeterminancy arises for 
various sizes of the flowing core. However, it is found that, whenever selective 
withdrawal occurs, the flowing core tends to adjust itself such that the flow pos- 
sesses a minimum flow force as well as a minimum energy flux. Such a flow is 
called a pseudo-critical blocked flow. 
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(ii) For the physical flow of selective widthdrawal, a unique intrinsic Rossby 
number R' based on the properties of the flowing core is determined with a value 
of 1/48, which agrees very well with the experimental value 0.36 obtained 
in I. 

(iii) Based on the experimental observations a theoretical model involving 
a blocking wave propagating upstream is proposed. It is deduced that for R > 0.06 
the speeds of blocking waves are higher than the maximum group velocity 
0.522Qb of the infinitesimal waves. In  this case, the blocking waves are non- 
linear in nature. However, for R < 0.03, the equivalent speeds of blocking waves 
are lower than 0.522Qb. In  this case, the waves are essentially linear and dis- 
persive in nature. 

The authors would like to acknowledge several helpful discussions with Pro- 
fessor T. W. Kao of the Catholic University of America. This work was supported 
by the Atmospheric Sciences Section, National Science Foundation, under 
NSF Grants GA-23784 and GA-10825. 

Appendix 
By TIMOTHY W. KAO, The Catholic University of America 

The method used by Kao (1965a, 1970) to construct a dividing streamline in 
the flow of a stratified fluid in a channel of unit normalized depth (and used in an 
analogous manner in the present paper) entails the introduction of a sink distribu- 
tion on the end wall (i.e. on x = 0, between a < y < 1, where x is horizontal and 
y is vertical) in addition to the two-dimensional point sink at the origin. In  order 
that the dividing streamline may serve as a free streamline on which the nor- 
malized speed is unity in the interior of the flow field, the dividing streamline 
must meet the end wall (x = 0 )  tangentially. A question arises as to whether 
there are conditions on the sink distribution under which the tangency of the 
dividing streamline to the end wall is assured. 

It will now be shown that the dividing streamline will meet the line x = 0 
at  y = a tangentially if the strength of the sink distribution falls to zero linearly 
at  y = u and if the strength of the point sink relative to that of the sink 
distribution is sufficiently strong in a sense that will be made explicit later. 
On the other hand, if the strength of the sink distribution is finite at y = a, 
such as in the case of a uniform sink distribution, there is a local singularity 
of a logarithmic nature for the vertical velocity component v. I n  that case 
the dividing streamline must meet the line x = 0 in a stagnation point in the inter- 
val 0 < y < a. It will however also be shown that the logarithmic singularity is 
felt only in a small neighbourhood of the point y = u, so that by letting the uni- 
form sink distribution fall off to zero rapidly in a linear manner in a small 
interval u < y < u + E ,  where e is positive, the singularity is easily removed and 
tangency at  y = a is assured for a sufficiently strong sink at  the origin. Thus for 
calculational purposes the uniform sink distribution is adequate. 

To examine the nature of the velocity a t  the pointy = a one may first consider 
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the following for two-dimensional potential flow in an infinite medium. Let a 
sink distribution of strength m(y) be located on the line x = 0 in 

The stream function is 
u < y G 2 - a  ( O < a < l ) .  

and 

We shall presently introduce point sinks a t  y = 0 and 2. For this symmetric 
situation about y = 1, we need only consider 0 < y 6 1. Now, on x = 0, v has a 
logarithmic singularity a t  the point y = a if m(a)  is finite. On the other hand, if 
m(7) behaves like -a  around y = a the value of u is finite and positive there. 

I n  the latter case the horizontal velocity component u is zero for x = 0 and 
0 < y < a. Thus, if a sink is located a t  the origin and the magnitude of the velocity 
u in the interval 0 < y 6 a due to the point sink is greater than the corresponding 
values due to the sink distribution, the dividing streamline must meet the point 
y = a tangentially. 

For a finite channel of depth normalized to unity, the arguments outlined above 
remain substantially the same. These may be made more precise as follows. The 
solution for a uniform sink distribution situated at x = 0 and along a 6 y 6 1 is 

sin nna 
exp (nnx) sinnny (x 6 0, 0 < y < I ) ,  

with = a ~ p x .  

The differentiated series converges for all x < 0. Direct computation of v at 
y = a and 1x1 = 0.01, 0.001 and 0.0001 reveals the logarithmic singularity there 
and gives u N IO.381oglxll as x --f 0, the radius of influence being of O(10-3). 
(For stratified fluid the factor exp (nnx) is replaced by exp [(n2nz - P 2 ) 4  X I ,  where 
P is a Froude number whose value is greater than 1/n, but the nature of the 
singularity is the same.) Now if the uniform sink distribution is allowed to de- 
crease its strength linearly from y = a f e  t o  y = a ,  where e is say of 0(10-2), 
the flow field is unchanged for 1x1 > 0.01 and v approaches a finite positive 
number as x + 0 a t  y = a. A direct computation using the appropriate series 
solution with u = 0.23, e = 0.02 and t: = 0.005 demonstrated the above result 
giving v 2 1.9 and 2.4 respectively as x --f 0. Indeed by adjusting the value of 
e, v can be made to take on different values. Therefore for practical calculation 
the uniform sink distribution is recommended. A more refined calculation for 
1x1 < 0.01 may subsequently be performed by letting the uniform distribution 
to go to zero linearly at y = a. This refinement of course may only be carried out 
a t  considerable expense of computation time since the series solutions converge 
extremely slowly for small values of x. Its  execution is probably unwarranted 
and may be omitted. 
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